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Abstract. Wind farm layout optimization usually aims at maximizing annual energy production by placing wind turbines in

a strategic way to avoid wake losses. However, this might not lead to optimal profits because of the volatility of electricity

prices. Moreover, with the growing unpredictability and variability of future power systems due to the increase of renewable

electricity production, wind farm operators will have a more important role in balancing the system through participation to

reserve markets. This study presents a new formulation for wind farm layout optimization where the objective function aims5

at maximizing revenues from both day-ahead and reserve markets. It uses stochastic gradient descent for the optimization and

probabilistic forecasts for wind power and electricity prices. The new formulation is applied on a test case based on a real-

life offshore wind farm in Belgium. An important conclusion is that annual profit is expected to increase in a significant way

when accounting for participation to reserve markets, while exhibiting a lower supplied energy production. Moreover, layouts

optimized for profit maximization with reserve participation lead to better yearly profits than when considering day-ahead10

market only in the objective function. Profits are also higher for the new methodology than when using the maximization of

annual energy production, widely used in the literature, as objective function.

1 Introduction

With the sharp increase of renewable energy sources in modern power systems, balancing electrical load and generation

throughout the day is becoming a challenge. In case of real-time imbalance in the system, the Transport System Operator15

(TSO) needs to activate reserves in order to restore the balance and avoid frequency deviations. In the near future, with a high

penetration of weather-dependant electricity generation, the intra-hour variability and randomness will become more signifi-

cant, increasing the need for fast regulation and the value of reserve. Reserve markets, which allow power plant operators to

act as Balancing Service Provider (BSP), will be critical for the reliable integration of renewable electricity. Because offshore

wind generation capacity is expected to grow steadily in the future, wind farm operators will have an important role in reserve20

markets and system balancing. Allowing offshore wind farms to participate in the reserve market will be of mutual interest
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to TSOs and wind producers. Moreover, it has been proven that variable speed wind turbines in modern wind power plants

have intrinsic fast down (virtually at no cost) and ramping up (subject to the availability of wind power) capabilities, which

can be effectively used to provide ancillary services (Kayedpour et al., 2024, 2022). To alleviate frequency deviations, the

TSO has several reserve capacities, with different requirements for maximum ramping and activation time. The focus of this25

work will be on Automatic Frequency Reserve Restoration (aFRR), also called secondary reserve or R2. Indeed, volume needs

of secondary reserves are usually higher and are expected to reach even larger values than those for primary reserve in the

future (Elia, 2023). Moreover, primary reserve requires an activation and ramping to full capacity within seconds (Perroy et al.,

2020), which might be prohibitive within wind farms, where wind and wake effects take time to propagate. Tertiary reserve

is manually activated and is only used to complement and release secondary reserve (e.g., for very extensive imbalances). It30

must be able to stay active for a long period of time (hours), which could be a challenge for wind farm operators because of

the variability of wind. Therefore, secondary reserves seem to be suitable for increasing revenues of wind farms participating

to reserve markets (Sumetha-Aksorn et al., 2022; Windvision et al., 2015). Secondary reserves have a fast response time, are

used in both directions to restore a frequency of 50 Hz, and remain active as long as necessary. The TSO activates aFRR

automatically by sending a set-point every four seconds and the requested energy is to be activated within 7.5 to 15 minutes in35

case of selection of the full volume of the aFRR energy bid.

Regarding the participation of wind farms to a Joint day-ahead Energy and Reserve Market (JERM), optimal offering and

allocation policies have been investigated, but with the assumption of constant electricity prices (Soares et al., 2017). This does

not allow to capture the variation of day-ahead and reserve prices with wind speed and wind direction. A combined energy

and regulation reserve market model has been developed to encourage wind producers to regulate their short-term outputs40

(Liang et al., 2011), but it assumes that marginal revenues of providing day-ahead energy is always higher than the marginal

revenues for upward reserve as well as perfect forecasts of market prices. Provision of reserve by wind power units has been

considered for generation capacity expansion (Cañas-Carretón and Carrión, 2020) and simulations were only carried out over

9 representative days of load and generation.

While current wind farms have usually been designed to maximize their power output, future wind farms should be planned45

and built taking into account the participation to reserve markets. Wind farm layout optimization (WFLO) usually aims at

maximizing annual energy production (AEP). It attempts to choose the best placement for turbines, which is equivalent to min-

imizing wake losses. Indeed, when wind turbines extract mechanical energy from the wind to produce electricity, they cause a

reduction of wind speed behind them. Downstream turbines in the wake therefore produce less energy. On a site with specific

wind conditions, WFLO will avoid aligning turbine in the directions of dominant wind. Layout optimization for maximizing50

AEP has been widely studied in the literature, using gradient-based optimization techniques (Quick et al., 2023; Rodrigues

et al., 2023; Park and Law, 2015), gradient-free (Hou et al., 2015; Feng and Shen, 2015; Long et al., 2020), or comparing both

(Thomas et al., 2023). The idea behind maximizing AEP is that it will maximize profits for wind farm operators selling energy

on the day-ahead energy market (DAEM). However, both objectives might not lead to the same results because of the high

volatility of electricity prices. Producing much energy in periods of low prices will lead to reduced profits. When considering55

only day-ahead market, if patterns of low and high prices do not match wind direction patterns, optimizing AEP is not the same
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as maximizing profit. Indeed, maximizing profit might lead to higher profits while decreasing supplied energy (and thus turbine

loads). WFLO for yearly profit has been studied in previous works (Stanley et al., 2021; González et al., 2010; Gonzalez et al.,

2012), but wind power was sold only on the day-ahead market. Adding participation to reserve market will also impact results

if day-ahead (DA) and reserve prices do not show the same variations with regard to wind direction.60

To the best of the authors’ knowledge, this is the first paper that presents a wind farm layout optimization that accounts for

the participation to reserve market in the profit objective function. Therefore, the contributions of this paper are threefold.

Firstly, a new formulation for computing the optimal offering, reserve allocation strategy, and subsequent expected profits of

a wind farm participating in both day-ahead and secondary upward reserve markets is developed. It considers the uncertainty65

in forecasts of wind power, electricity prices and activated reserve volumes. The estimated penalties and balancing costs for

failing to provide energy and reserve are also taken into account. The study is conducted for the Belgian system using existing

market rules. However, although this system has some peculiarities, the main methodology could be applied in other systems

with minor modifications.

Secondly, this new formulation will be used as the objective function of a wind farm layout optimization maximizing yearly70

profits. Because computing yearly profits at each iteration step of the optimization is too costly, stochastic gradient descent

(SGD) is used. This prompts the need to make the profit function differentiable. The gradient of the total profit is estimated for

a limited amount of timesteps. This allows to obtain rather accurate results in a reasonable computation time.

Thirdly, the new formulations are applied on a real wind farm, using historical data for wind and electricity prices. When

considering the current built layout, it is shown that operating the wind farm with provision of reserve leads to significantly75

higher yearly profits than when participating only to DAEM. Then, the new WFLO methodology is applied to optimize the

layout while accounting for reserve participation. Yearly profits, supplied energy and AEP of the best optimized layout are

compared with regard to the current built configuration of the test wind farm. The optimized layout is also compared with

those obtained using the traditional AEP maximization formulation. A profit function only accounting for participation to day-

ahead market is also used for the optimization. The three approaches are compared in terms of expected yearly profits and80

supplied energy. Finally, generalization to unseen data is studied.

The remainder of the paper is structured as follows. In Section 2, the general formulation for the computation for revenues

from both day-ahead and reserve markets is presented, as well as its integration in the wind farm layout optimization problem.

Section 3 details the wind farm optimization test case and briefly analysis historical data from Belgium. Section 4 analyses85

results and comparisons are made with more traditional wind farm layout optimization formulations. Finally, conclusions and

future work are gathered in the last section.
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2 Methods

One day before real-time delivery (market closure is at noon), for each timestep t of the 24 hours of the next day k, a wind

farm operator:90

– forecasts available wind power P̂wind, avail
k,t

– decides the total amount of power sold to both day-ahead and reserve markets P c
k,t

– decides the amount of reserve capacity to procure to the reserve market Rk,t = αk,t ∗P c
k,t

– computes the power to be sold in day-ahead energy market PDA
k,t = P c

k,t− R̂k,t

The wind farm reserve capacity represents the amount of power that the wind farm holds back from electricity production, to95

sell in the reserve market instead of the day-ahead energy market. Based on weather forecasts (and thus wind power forecasts),

a wind farm operator bids its electricity production in the day-ahead market and the reserve capacity in the secondary reserve

market. On the day of delivery, the wind farm must be able to supply both the day-ahead and activated reserve quantities. In

this work, it is assumed that wind farms always prioritize providing reserve (as the wind farm is contractually bound to reserve

this capacity).100

The accuracy of weather and thus wind power forecasts is crucial in order to make relevant bids in both markets: under-

estimation leads to lower bids and decreased profits, while overestimating production results in inability to supply contracted

bids, thus incurring financial penalties. Moreover, electricity prices can be highly volatile, and the actual activation of reserve

depends on the system imbalance, which is also fluctuating. Forecast errors on electricity prices and activation volume can

lead to a wrong estimation of expected profit. In this work, we assume that forecast errors follow a gaussian distribution with a105

given mean and standard deviation. For each considered timestep, S forecast errors are randomly sampled using a Monte-Carlo

approach.

2.1 Wind power forecasts

The forecast of available wind power P̂wind, avail
k,t depends on (previously) forecasted free-flow wind speed û∞k,t and wind

direction θ̂k,t.110

P̂wind, avail
k,t,s = f(û∞k,t,s, θ̂k,t,s)

The operator f(·) denotes the conversion of wind data to wind power: it is based on the wind turbines power curve and should

account for wake effects arising within the wind farm. The index s denotes the Monte Carlo sample number related to forecast

error sampling.

The forecasted wind speed û∞k,t is derived from the actual realization of wind speed (normally not known by the wind farm115

operator) and a forecast error sampled from a normal distribution.

û∞k,t,s = u∞k,t + ϵu
k,t,s

ϵu
k,t,s ∼N(0,σu) (1)
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The same process is used to forecast wind direction

θ̂∞k,t,s = θ∞k,t + ϵθ
k,t,s

ϵθ
k,t,s ∼N(0,σθ) (2)

Therefore, forecasts of available wind power can be written as:120

P̂ avail
k,t,s = fP (u∞k,t + ϵu

k,t,s,θ
∞
k,t + ϵθ

k,t,s) + ϵfP

k,t,s (3)

ϵfP

k,t,s is the modelling error associated with the wind farm model. For wind speed forecasting, literature shows that forecast

errors follow a gaussian distribution with mean 0 and standard deviation approximately equal to 15% (ECMWF, 2024). For

wind direction, day-ahead forecasts show a root mean squared error of 4.2 ◦ (Chitsazan et al., 2019).

2.2 Day-ahead energy market125

The day-ahead energy market is a financial market where participants purchase and sell electrical energy at financially binding

day-ahead prices for the following day. Electricity is traded at 12h00 for the 24 hours of the next day and the market is cleared

based on an auction mechanism, where market price and volume is the intersection point between the demand and supply

curves. After the auctions on day-ahead markets are closed, existing shortfalls or surpluses can still be evened out through

intra-day trading. However, intra-day market is not considered in this work, as prices are extremely volatile and tend to have130

similar patterns than imbalance fees. Indeed, market participants are charged with imbalance fees every time they deviate from

their nominations. These fees, set on a quarter-hourly basis, aim at ensuring that participants contribute efficiently at balancing

the electrical system and reflect the cost related to the activation of additional energy (reserve) by the TSO.

Revenues from the day-ahead market for timestep t of day k can be written as (assuming perfect forecasts):

ProfitDA
k,t = PDA

k,t ∗λDA
k,t −∆PDA

k,t ∗λimb
k,t (4)135

where λDA
k,t is the day-ahead price, ∆PDA

k,t is the contracted power not supplied, and λimb
k,t is the imbalance fee.

Day-ahead prices and imbalance penalties need to be forecasted by the wind farm operator before it makes its bid on the

market. For the gaussian distribution parameters of day-ahead electricity prices, µ is approximately 0 and σ is around 7% (Lago

et al., 2021).

2.3 Reserve market for aFRR140

Upward regulation is activated in case of negative imbalance in the system (consumption exceeds production), and downward

regulation is used for positive imbalance. In this work, we only consider the provision of upward reserve regulation since wind

farms are not able to benefit from fuel-saving returns in downward regulation (Toubeau et al., 2020). Indeed, activation of

downward reserves can yield both positive (the TSO pays the BSP) and negative prices (the BSP pays the TSO) (Brijs et al.,

2015). Negative prices result from producers (e.g., gas-fired power plants) willing to lower their output since their energy is145

already sold in long-term markets and they can save operating costs: they are usually willing to pay the TSO a small amount.
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However, when facing scarcity of downward flexibility, BSP may bid positive activation prices, i.e. being paid for the service,

which is the only case where providing downward reserve would be profitable for wind farm operators. It should be noted that

this assumption strongly depends on market conditions, but it is suitable for the Belgian case study considered in this work.

Therefore, we will only focus on upward reserve.150

Revenues from the aFRR upward market are twofold. BSP earn revenues from the procurement of reserve capacity (through

capacity bids), and balancing revenues from the real-time activation of procured reserves. The reserve capacity price λR,c is

determined through a pay-as-bid process. We assume that because of the lower production costs for wind generation than con-

ventional power plants, capacity bids from wind farm will be well placed in the merit order and will be chosen first by the TSO.

The reserve activation price λR,a is pay-as-cleared and contracted aFRR energy bids for possible activation on day k have to be155

submitted by the BSP to the TSO at the latest in day-ahead (day k-1). The TSO may activate partially or entirely aFRR energy

bids, depending on the negative system imbalance. This process is presented in Fig. 1. The uncertainty in the balancing actions

(i.e., the total amount of activated upward reserve) is modeled through scenarios of reserve activation κa ∈ [0,1]. Moreover, in

case of several market players bidding in the balancing market, we assume an equal distribution of reserve among all market

participants.160

Day (k) - 1

12:00

Day-ahead

market

Reserve capacity

market

Other market participants

Day (k)

Delivery (t)

Reserve energy

market

Imbalance

settlement

Contracted

bids

Transport System Operator

Wind farm operator

Figure 1. Bidding process of an offshore wind farm operator participating in both day-ahead and reserve markets.

Failing to provide the activated reserve requested by the TSO leads to activation penalties that are calculated as follows (Elia,

2022):

PenaltiesR,a
k,t = γa ∗ Reserve discrepancy

Reserve requested
∗ (Capacity remuneration + Activation remuneration) (5)

where γa is a penalty multiplier for failing to provide activated reserve. It is set by the TSO and in Belgium, Elia has chosen165

a value of 1.3 for γa. The reserve discrepancy during activation (contracted reserved not supplied when requested) ∆Ra
k,t is

6

https://doi.org/10.5194/wes-2024-131
Preprint. Discussion started: 14 November 2024
c© Author(s) 2024. CC BY 4.0 License.



defined as:

∆Ra
k,t = Rrequested−Rsupplied

∆Ra
k,t = Rk,t ∗κk,t−min(Rk,t ∗κk,t, P̂

wind, avail
k,t ) (6)

In our problem, this translates to this equation:

PenaltiesR,a
k,t = 1.3 ∗

∆Ra
k,t

Rk,t ∗κa
k,t

∗ (Rk,t ∗λR,c
k,t + Rk,t ∗λR,a

k,t ∗κa
k,t)

PenaltiesR,a
k,t = 1.3 ∗

∆Ra
k,t

κa
k,t

∗ (λR,c
k,t + λR,a

k,t ∗κa
k,t) (7)170

Moreover, Elia controls the availability of the aFRR capacity by performing availability tests. Elia has the right to perform

at maximum 12 availability tests on a rolling window of 12 months and each test lasts for 3 quarters of an hour. In case of a

failed availability test, the BSP must pay financial penalties.

PenaltiesR,c
k,t = γc ∗∆Rc

k,t ∗λR,c
k,t (8)

∆Rc
k,t is the missing reserve capacity during the availability test and γc is the penalty factor, equal to 0.75 by default.175

However, in case the penalty concerns a second consecutive failed availability test, γc is equal to 1.5.

But more importantly, ELIA hinders the possibility of participating to reserve markets by adapting the upper limit of aFRR

capacity bids in case of two or more failed consecutive availability tests of the same aFRR capacity product. To account for

this technical penalty, we should set a very high penalty price when available power for activation in real-time is lower than

reserve capacity bids. This allows to account for this technical constraint in the profit formulation. Therefore, we set γc to 10.180

For a timestep k,t where a wind farm decides to participate to the reserve market, revenues from reserve are computed as

follows:

Profitreserve
k,t = (Rk,t ∗λR,c

k,t + Rk,t ∗λR,a
k,t ∗κa

k,t)− (1.3 ∗
∆Ra

k,t

κa
k,t

∗ (λR,c
k,t + λR,a

k,t ∗κa
k,t) + γc ∗∆Rc

k,t ∗λR,c
k,t ) (9)

Reserve and regulation prices are characterized by higher volatility, lower mean, more frequent price spikes and a more

skewed distribution compared to electric energy prices. Thus modelling their behavior is potentially more challenging (Wang185

et al., 2013).

2.4 Profit computation

To summarize, revenues from the participation of both day-ahead and reserve markets over T timesteps of K days can be

written as:

Profit =
K∑

k

T∑

t

Es [ (PDA
k,t ∗ λ̂DA

k,t,s + Rk,t ∗ λ̂R,c
k,t,s + Rk,t ∗ λ̂R,a

k,t,s ∗ κ̂a
k,t,s)

− (∆PDA
k,t,s ∗ λ̂imb

k,t,s + 1.3 ∗
∆Ra

k,t,s

κ̂a
k,t,s

∗ (λ̂R,c
k,t,s + λ̂R,a

k,t,s ∗ κ̂a
k,t) + γ ∗∆Rc

k,t ∗ λ̂R,c
k,t,s) ] (10)190
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For each timestep t of day k, an inner optimization problem gives the optimized total power contracted to the market (day-

ahead and reserve), and the percentage of power allocated for the reserve.

Max
αk,t,βk,t

Es [ PDA
k,t ∗ λ̂DA

k,t,s + Rk,t ∗ λ̂R,c
k,t,s + Rk,t ∗ λ̂R,a

k,t,s ∗ κ̂a
k,t,s

− (∆PDA
k,t,s ∗ λ̂imb

k,t,s + 1.3 ∗
∆Ra

k,t,s

κ̂a
k,t,s

∗ (λ̂R,c
k,t,s + λ̂R,a

k,t,s ∗ κ̂a
k,t,s) + γ ∗∆Rc

k,t,s ∗ λ̂R,c
k,t,s) ] (11)

with:

PDA
k,t = (1−αk,t) ∗βk,t ∗P farm,rated

Rk,t = αk,t ∗βk,t ∗P farm,rated

0≤αk,t ≤ 1 ∀k,t

0≤βk,t ≤ 1 ∀k,t (12)195

Rk,t ∈ [0,Rmax] (13)

The agreed upon power schedules, PDA
k,t and Rk,t are the true design variables in this problem. The total contracted power

in reserve and day-ahead markets cannot exceed the wind farm installed capacity, which is translated with constraints (12).

Moreover, reserve bids are limited to a maximum value Rmax, ensured by constraint (13). Indeed, according to Elia rules for

BSP participating to aFRR markets, each bid should not exceed 50 MW per delivery point. Furthermore, aFRR requirements200

for the Belgian power system was 117 MW in 2023 (total power contracted by Elia with BSPs), which sets an absolute value

as well. For each timestep, the wind farm operator chooses to contract P c
k,t, the total contracted power, to the JERM. This

quantity is optimized through the βk,t variable. The allocation of this contracted power to the day-ahead and reserve markets

is then given with αk,t. As a reminder, in case of missing power (available power lower than power contracted in the JERM,

i.e. ∆PDA
k,t,s and/or ∆Ra

k,t,s ≥ 0), the supply of activated reserve will always be prioritized, regardless of imbalance prices.205

This optimal allocation of day-ahead and reserve power is similar to the flexible stochastic formulation available in the literature

(Soares et al., 2017). This approach is characterized by its total freedom to choose the energy and reserve share in each stage

of the problem; i.e. the wind farm can take advantage of the intermediate information about wind power production, thereby

reducing the penalties at the balancing stage. This means that the operator can adjust the share of energy and reserve in the

balancing stage in line with the expected power production in each scenario s. Optimal values of αk,t and βk,t can be found210

with a combinatorial exploration (since their range is limited and granularity do not have to be very high, as power bids are

submitted by steps of 1 MW).

2.5 Layout optimization

Taking into account uncertainty on wind (thus wind power) and price forecasts, we can write the optimization problem:
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Max
xxx,yyy

K∑

k

T∑

t

Es [ PDA
k,t ∗ λ̂DA

k,t,s + Rk,t ∗ λ̂R,c
k,t,s + Rk,t ∗ λ̂R,a

k,t,s ∗ κ̂a
k,t,s

− (∆PDA
k,t,s ∗ λ̂imb

k,t,s + 1.3 ∗
∆Ra

k,t,s

κ̂a
k,t,s

∗ (λ̂R,c
k,t,s + λ̂R,a

k,t,s ∗ κ̂a
k,t,s) + γ ∗∆Rc

k,t,s ∗ λ̂R,c
k,t,s) ]215

subject to
√

(xi−xj)
2 + (yi− yj)

2 ≤ dmin ∀ i, j > i (14)

xl ≤ xi ≤ xu ∀i

yl ≤ yi ≤ yu ∀i (15)

The design variables are xxx and yyy, the vectors of x- and y-coordinates of wind turbines. Constraint (14) ensures a minimum220

spacing dmin between adjacent turbines while (15) keeps turbines from being outside the farm boundaries ([xl-xu], [yl-yu]).

The objective function aims at maximizing the total profit over T timesteps of K days. The total power contracted in the

JERM, the allocation of reserve and the distribution of potential missing power is determined from Eq. (11). The complete

methodology is summarized in Fig. 2.

The optimization is carried out using stochastic gradient descent, which is an iterative method for optimizing a differen-225

tiable objective function. It replaces the actual gradient (calculated from the entire data set) by an estimate (calculated from

a randomly selected subset of the data). Therefore, the algorithm follows the mean gradient by a specified distance, which is

equivalent to optimizing the expected value of the objective function (Quick et al., 2023). This reduces the very high computa-

tional burden in high-dimensional optimization problems, achieving faster iterations but at the cost of a lower convergence rate.

The inner optimization for the optimal bidding strategy in the JERM, defined by Eq. (11), is solved through a combinatorial230

exploration, which makes it differentiable and thus compatible with the SGD algorithm. Because computing the total profit for

a year (365 days * 96 quarters of an hour, i.e., 35,040 timesteps) at each iteration would bee too costly, SGD is particularly

relevant for our proposed WFLO formulation.

3 Test case

We use data from Northwind, a Belgian offshore wind farm situated 38 km from the coast, in the North Sea, within the first235

Belgian offshore cluster. Northwind consists of 72 Vestas turbines, for a total installed capacity of 216 MW. Each turbine has

a rotor diameter of 112 m, a hub height of 71 m, and the rated power is 3.075 MW. The layout of this wind farm can be seen

in Fig. 3.

Before optimizing the layout, expected yearly profits and supplied energy are computed for the current built layout (fur-

ther referred to as the base layout), for different modes of operation (with and without reserve). Then the maximum amount240
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Combinations of (α, β)

Update (x, y)

New (x, y)

Profit function

Pywake

Gradient wrt 

(x, y)

Forecasts of prices λs and 

reserve volume activation κs

Forecasts of wind speed 

and direction us, θs

Forecasts of wind power

Max

Expected profit for every 

combi. of (α, β) 

Max. expected profit

Combinations of (PDA, R)

For loop s in 1…S

Total expected profit

For every timestep kt

Figure 2. Methodology for layout optimization accounting for reserve participation

of power that can be allocated to reserve Rmax is set to different values. First, Elia has set a limit of 50 MW per delivery

point in its current BSP agreement. Then, the required volume of aFRR reserves that Elia should ensure throughout the year

was 117 MW for 2023. However, with the growing penetration of renewable energies foreseen in the future, one can expect

that this requirement will increase as well. Indeed, power systems will become highly weather-dependant, thus more prone to

variability and unpredictability. We therefore set two more values for the maximum allocated reserve: Elia’s total aFRR needs245

(approximately equal to half of the wind farm rated capacity, if the operator wants to keep a part of available wind power for

other markets), and the full farm capacity.
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Figure 3. Layout of Northwind offshore wind farm

WFLO is then carried out with the new formulation for the objective function that maximizes profit from both day-ahead and

reserve markets. Historical data from 2023 in Belgium (see section 3.1) are used during the optimization process. To assess the250

influence of accounting for reserve in the WFLO process, optimization with day-ahead market only is also simulated. Then,

to compare with state-of-the-art WFLO formulations, the layout will also be optimized with the objective of maximizing AEP.

Results will be compared in terms of expected yearly profits and yearly production. Moreover, it is important that the optimal

layouts are not only relevant for the data used in the optimization process. Therefore, yearly profits are also computed for

unseen data, i.e. historical data from another year (2024).255

The new objective function for WFLO has been integrated into the TOPFARM framework (Riva et al., 2024), comprising

the SGD optimizer. Profit and AEP gradients are computed using automatic differentiation. Turbine powers are obtained from

Pywake simulations (Pedersen et al., 2023), using the Bastankhah Gaussian wake model for velocity deficits, the Crespo-

Hernandez turbulence model for added turbulence and linear superposition. The minimum turbine spacing dmin (constraint of260

Eq. (14)) is set to 2 rotor diameters. The SGD optimizations are carried out using the following parameters: the initial learning

rate is one rotor diameter, the maximum number of iterations is 2000, and the initial value for constraint aggregation multiplier

is 0.1. We use several values of K ∗T (numbers of samples for every SGD iteration) when optimizing for profits and AEP. To

obtain statistically significant results, each case of SGD optimization is run using 5 different initial random starting conditions.
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3.1 Analysis of historical data in Belgium265

(a) (b) (c)

Figure 4. Mean electricity prices with regard to (a) wind direction and (b) wind speed in 2023. (c) Mean normalized activated volumes of

reserve with regard to wind direction.

To help better understand the motivations of this work, we analyse historical data of wind, electricity prices and activated

reserve volume for the year 2023 in Belgium. Data of wind speed and wind direction at the location of the offshore wind farms

in the Belgian North Sea have been gathered from ERA5 database. Electricity prices for the day-ahead market were available

on the European Network of Transmission System Operators (ENTSO-E) transparency platform (ENTSO-E, 2024). Prices

for reserve capacity and reserve activation, as well as activated upward aFRR reserve volumes are were provided by Elia, the270

Belgian TSO (Elia, 2024). From Fig. 4, we can study the variations of price with regard to wind direction and wind speed,

and the mean activated reserve per wind sector. It can be seen in Fig. 4(a) that mean day-ahead prices do not follow the same

pattern as mean reserve capacity and activation prices with regard to wind direction. Indeed, mean day-ahead prices show a

lower mean value for the wind sector centered around 230 ◦. This wind sector corresponds to the direction of dominant wind

in this area of the North Sea (direction with most occurrences), as it can be seen in Fig. 5. This leads to a discrepancy between275

maximizing profits and energy production. Indeed, when prices are not considered, WFLO will try to avoid aligning turbines

in the dominant wind direction. However, since prices tend to be lower in that wind section, it might be more profitable to

avoid wake losses in other directions, where prices are higher. Mean reserve capacity prices, on the other hand, tend to be

higher in that wind direction sector, while reserve activation prices do not show a significant increase or decrease. This means

that accounting for participation to reserve will affect the optimization results, as day-ahead and reserve prices have different280

patterns with regard to wind direction. Fig. 4(c) shows the volumes of activated reserve normalized by the maximum activated

volume for aFRR upward reserve (117 MW in 2023). We can see that mean activated volumes tend to be lower in the direction

of dominant wind. Another interesting analysis can be made in Fig. 4(b), which displays the mean electricity prices with regard

to wind speed. One can see that day-ahead prices tend to decrease with higher wind speeds, while it is the opposite for reserve

capacity prices. One reason that explains this reduction of day-ahead price with increasing wind speed is the high penetration of285
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offshore wind generation in the Belgian power system (10% of yearly consumption produced by offshore wind farms). Because

wind energy has lower production costs than conventional thermal power plants, a high production of electricity through wind

turbines can lead to lower prices in the day-ahead market. Reserve activation prices remain constant until approximately 20 m/s,

but show a sharp increase around 25 m/s, which is the cut-off wind speed of most Belgian offshore wind turbines. This is the

limit at which turbines are shut down to prevent mechanical damage, and the farm output goes from the rated power to 0.290

Therefore, a small prediction error in wind speed can lead to a tremendous need of reserve.

Figure 5. Wind rose at the location of Belgian offshore wind farms for 2023, from ERA5 data (latitude: 51.5◦N, longitude: 2.75◦E)

4 Results and discussions

4.1 Operating the current built layout with reserve participation

Before optimizing the layout of the Northwind wind farm, yearly profits are computed for the base layout (currently built)

using historical data from 2023. Three modes of operation are considered:295

– Producing as much wind power as possible (referred to as prod. max. operation in results tables). Energy bids are not

risk-based as they only rely on forecasts of available power, regardless of market conditions. This is the most simple

operation as the operator does not need to derate the turbines in case of unfavorable market conjuncture.

– Wind power is only sold on the day-ahead market but energy bids are made based on forecasts of available wind power,

day-ahead prices and imbalance penalties (referred to as DAEM optimized operation in results tables)300

– Wind power is sold on JERM (provision of reserve)
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The optimal allocation of day-ahead and reserve power on JERM is solved with Eq. (11) for every quarter of an hour of the

year, and the expected profits are summed over 35,040 timesteps. The maximum value allowed for reserve bids is first set to

50 MW. The optimized operation on DAEM only uses the same formulation but with Rk,t = 0 ∀k,∀t. This allows to assess the

impact of participating to the upward secondary reserve market.305

The expected supplied energy is the yearly production of the farm actually injected to the grid. For the JERM case, it

encompasses both the energy sold on the day-ahead energy market and the activated reserve. Note that electrical losses and

downtime due to maintenance and failures are not taken into account. AEPtheory is the theoretical yearly production of the

farm, computed solely by converting data of wind speed and wind direction to potential wind power. It does not include any

forecasting errors. Expected yearly profits and supplied energy are reported as µ ± σ√
S

, where the standard deviation relates to310

forecast uncertainty (sampling of S forecast errors).

Table 1. Expected yearly profits and supplied energy in 2023 for the initial base layout of Northwind, operated for maximizing production on

DAEM (a;d), maximizing profits on DAEM only (b;e), and maximizing profits on JERM (c;f, with maximum reserve bids Rmax=50 MW).

Results reported as µ ± σ√
S

, where µ and σ relate to forecast uncertainty.

Base layout

Expected yearly profits

(a) On DAEM only (operation for prod. max.) 60.6808 ± 0.0079 Me

(b) On DAEM only (operated for optimized profits) 64.6285 ± 0.0079 Me ▲6.51% w.r.t. (a)

(c) On JERM (operated with reserve) 69.6735 ± 0.0084 Me ▲7.81% w.r.t. (b), ▲14.82% w.r.t. (a)

Expected energy supplied

(d) On DAEM only (operation for prod. max.) 813.48 ± 0.04 GWh

(e) On DAEM only (operated for optimized profits) 777.14 ± 0.05 GWh ▼4.47% w.r.t. (d)

(f) On JERM (operated with reserve) 717.64 ± 0.05 GWh ▼7.66% w.r.t. (e), ▼11.78% w.r.t. (d)

AEPtheory 919.78 GWh

It can be seen in Table 1 that operating Northwind for maximizing production leads to the lowest profits. Indeed, making

energy bids on DAEM only for profits maximization increases expected yearly profits by 6.51%. This can be explained by two

factors. First, producing much wind power when day-ahead prices are negative is detrimental, but timesteps with such prices

only occur 2.52% of the time in data from 2023. Then, forecasting prices allows to adopt a risk-aware approach, i.e., bidding315

more when imbalance penalty prices are expected to be close to day-ahead prices (the risk is acceptable), and bidding less

than the forecasted available power in case of very high imbalance prices. This confirmed in Table 2, which shows the profits

breakdown between positive profits and imbalance penalties. Total imbalance penalties are higher when operating for profit

maximization, but the significant increase in positive profits allows to compensate for the penalties losses. Regarding supplied

energy, maximizing production obviously leads to more wind power injected to the grid. The reduction of supplied energy of320

4.47% when maximizing DAEM profits is very interesting, because it could lead to lower load constraints on wind turbines,

thus extending turbines lifetime. However, this aspect needs to be further investigated.
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Supplying secondary upward reserve (operate the wind farm on JERM) increases expected yearly profits by 7.81%, while the

supplied energy is decreased by 7.66%. Indeed, bidding a given amount of power in the reserve capacity and energy markets

does not mean that this power will be entirely supplied. If the system negative imbalance is not too severe, only a fraction of325

contracted reserves is actually activated by the TSO. However, the wind farm operator still earns profits by making this power

available to restore balance in the system. This is particularly profitable when day-prices are very low. It can be seen in Table 2

that while positive profits on DAEM are quite lower when providing reserve (earnings are "transferred" to the reserve markets),

imbalance penalties do not decrease significantly. This is inherent to our formulation, because in case of imbalance (available

wind power is lower than total power bidded on both DAEM and reserve markets), priority is given to the reserve provision.330

Table 2. Breakdown of expected yearly profits in 2023 for the initial base layout of Northwind, operated for maximizing production on

DAEM (a), maximizing profits on DAEM only (b), and maximizing profits on JERM (c, with maximum reserve bids Rmax=50 MW).

Positive profits Imbalance penalties Reserve profits Reserve penalties

on DAEM on DAEM

(a) On DAEM only (operation for prod. max.) 75.7382 Me 15.0574 Me / /

(b) On DAEM only (operated for optimized profits) 87.2550 Me 22.6264 Me / /

(c) On JERM (operated with reserve) 82.5963 Me 22.5231 Me 9.9439 Me 0.3435 Me

Sensitivity to reserve limit Rmax

Currently, the maximum value per delivery point of reserve capacity bids established by Elia is 50 MW. Moreover, the static

volume need of aFRR reserves for the Belgian power system in 2023 was set at 117 MW. However, as stated before, in future

weather-dominated power systems, the need for frequency regulation, including aFRR, will increase. Therefore, the wind farm

is operated considering for 2 other values of Rmax: 117 MW (approximately 1/2 of rated capacity, in case the operator always335

wants to keep a part of available wind power for other markets), and 221.4 MW (full farm capacity).

With Rmax=117 MW, it can be observed in Table 3 that for the base layout, expected yearly profits increase by 15.15% when

the wind farm offers aFRR services, while supplied energy drops by 14.6%. Compared to the previous case (Rmax=50 MW),

doubling the allowed maximum value for reserve capacity bids leads to a profit improvement also multiplied by 2 (15.15%340

against 7.81% previously). Regarding yearly supplied energy (on DAEM and activated reserve), it decreases when Rmax is

increased (≈ 664 GWh against≈ 718 GWh with Rmax=50 MW). Indeed, allowing for higher reserve bids enables wind farms

to participate more in frequency reserve services. But if reserve energy bids are not entirely activated by the TSO, less energy

is supplied, while profits are increased.

With the full wind farm capacity (221.4 MW) as Rmax, expected yearly profits on JERM in 2023 for the base layout are345

even higher. However, even though Rmax is doubled compared to the previous case, profit increments are not multiplied by 2

this time. Indeed, the improvement is at 20.60%, against 15.15% when Rmax was set at 117 MW. This shows a flattening of

profits augmentation, and wind farm operators might want to avoid allocating all available power to the reserve market. Indeed,

15

https://doi.org/10.5194/wes-2024-131
Preprint. Discussion started: 14 November 2024
c© Author(s) 2024. CC BY 4.0 License.



Table 3. Expected yearly profits and supplied energy in 2023 for the initial base layout of Northwind, operated for maximizing production on

DAEM (a;f), maximizing profits on DAEM only (b;g), and maximizing profits on JERM (c-e;h-j, for different limits on reserve participation,

Rmax). Results reported as µ ± σ√
S

, where µ and σ relate to forecast uncertainty.

Base layout Comparison

Expected yearly profits

(a) On DAEM only (operation for prod. max.) 60.6808 ± 0.0079 Me

(b) On DAEM only (operated for optimized profits) 64.6285 ± 0.0079 Me

(c) On JERM (operated with reserve, Rmax=50MW) 69.6735 ± 0.0084 Me ▲7.81% w.r.t. (b)

(d) On JERM (operated with reserve, Rmax=117MW) 74.4216 ± 0.0093 Me ▲15.15% w.r.t. (b)

(e) On JERM (operated with reserve, Rmax=221.4MW) 77.9445 ± 0.0106 Me ▲20.60% w.r.t. (b)

Expected energy supplied

(f) On DAEM only (operation for prod. max.) 813.48 ± 0.04 GWh

(g) On DAEM only (operated for optimized profits) 777.14 ± 0.05 GWh

(h) On JERM (operated with reserve, Rmax=50MW) 717.64 ± 0.04 GWh ▼7.66% w.r.t. (g)

(i) On JERM (operated with reserve, Rmax=117MW) 663.61 ± 0.05 GWh ▼14.61% w.r.t. (g)

(j) On JERM (operated with reserve, Rmax=221.4MW) 626.44 ± 0.04 GWh ▼19.39% w.r.t. (g)

AEPtheory 919.78 GWh

because of potential forecast errors, there is a significant risk to bid in only one market, and operators could want to keep a

part of available wind power for other markets (or even a security margin to avoid penalties when contracted power cannot be350

entirely supplied).

4.2 Optimized layout accounting for reserve participation

WFLO is carried out with the objective of maximizing profits on JERM. SGD optimizations are performed for different values

of Monte-Carlo samples (K ∗T ) and several initial conditions. Reported results are those obtained with the best optimized

layout out of all simulations, i.e. the one leading to the highest expected yearly profits on JERM.355

As it can be seen in Table 4, the best optimized layout leads to an increase of yearly profits on JERM by 3.10%, as well

as 3.17% more supplied energy. This augmentation of production could be explained by two reasons. On one hand, a better

placement of wind turbines to avoid wake losses leads to an improved electricity production in general. On the other hand, this

increase of power output coincides with wind directions related to higher electricity prices, which boosts profits. Considering360

that the average lifespan of an offshore wind farm is approximately 20 years (Topham and McMillan, 2017), a profit increased

by 2.16 Me per year leads to a significant improvement in the wind farm profitability: more than 40 Me over the farm lifetime.

Note that these numbers cannot be directly generalized for other electricity pools, but since most European electricity markets

have a similar structure, applying this methodology is also expected to result in higher yearly profits for layouts optimized for
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Table 4. Expected yearly profits and supplied energy in 2023 for the best layout optimized on JERM, operated for maximizing production on

DAEM (a;d), maximizing profits on DAEM only (b;e), and maximizing profits on JERM (c;f, with maximum reserve bids Rmax=50 MW).

Results reported as µ ± σ√
S

, where µ and σ relate to forecast uncertainty.

Base
Layout optimized

on JERM

Expected yearly profits

(a) On DAEM only (operation for prod. max.) [Me] 60.6808 ± 0.0079 62.8504 ± 0.0076 (▲3.58% w.r.t. base)

(b) On DAEM only (operated for optimized profits) [Me] 64.6285 ± 0.0079 66.7564 ± 0.0081 (▲3.29% w.r.t. base)

(c) On JERM (operated with reserve) [Me] 69.6735 ± 0.0084 71.8338 ± 0.0083 (▲3.10% w.r.t. base)

Expected energy supplied

(d) On DAEM only (operation for prod. max.) [GWh] 813.48 ± 0.04 836.44 ± 0.04 (▲2.82% w.r.t. base)

(e) On DAEM only (operated for optimized profits) [GWh] 777.62 ± 0.05 800.40 ± 0.05 (▲2.99% w.r.t. base)

(f) On JERM (operated with reserve) [GWh] 717.98 ± 0.04 740.42 ± 0.05 (▲3.17% w.r.t. base)

AEPtheory [GWh] 919.78 942.71 (▲2.49% w.r.t. base)

profit maximization with reserve participation.365

The best optimized layout is plotted in Fig. 6 and compared to the current layout of Northwind. Turbines that were on the

farm boundaries in the base layout kept their position on the outer limits (even though turbines had random positions in the

starting initial conditions of the optimization). However, inner turbines positions have been significantly modified compared to

the base layout. Indeed, while the structure of rows has been approximately maintained, it can be observed that more turbines370

are placed together on a row, while consecutive rows are more distant from one another and are not parallel (which was the

case for all rows in the base layout). A few turbines have a more irregular position (in-between rows).

Another interesting characteristic to compare between the optimized and base layouts is the power rose. It shows the power

output of the wind farm with regard to wind direction, for a given wind speed. In Fig. 7, the power is normalized by the wind375

farm rated capacity (for Northwind, 221.4 MW). It allows to identify the wind directions leading to higher wake losses.

The power rose of Fig. 7(a) shows that the base layout exhibits many power drops, with wake losses being the most severe

for directions of 135◦ and 315◦ (0◦ corresponds to wind blowing from the North, then clockwise counting). This pattern is

inherent to regular layouts, where turbines are placed in rows equidistant from each other and wake losses are at their maximum

when most turbines are aligned with wind direction. In Fig. 7(b), wake losses are still prevalent for wind directions of 135◦ and380

315◦, but they are less severe, and power drops are smoothed for other directions. Indeed, while still located on rows, turbines

from different rows are more distant, allowing wind speed to recover between consecutive rows. However, it should be noted

that a more irregular turbine placement can lead to higher installation costs and fatigue loading (Sickler et al., 2023).
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Figure 6. (a) Base layout of Northwind offshore wind farm, (b) Best layout optimized for profit maximization with participation to reserve

market.
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Figure 7. Power roses of Northwind (a) Base layout, (b) Layout optimized for profit maximization in JERM.

4.3 Comparison with layout optimized without reserve

To assess the impact of including participation to reserve in the layout optimization process, the objective function has been385

modified as to only include profits from the day-ahead market (i.e., setting Rmax = 0 MW), referenced as the DAEM case. Like

before, SGD optimizations are performed for different values of Monte-Carlo samples (K ∗T ) and several initial conditions.

For every obtained layout optimized without consideration of reserves in the objective function, expected profits on DAEM
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only (i.e., wind farm operated without reserve) are computed. The optimized layouts for DAEM are also operated with reserve

in order to compare yearly profits on JERM with those computed for the layouts optimized with reserve participation.390
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Figure 8. Expected yearly profits on JERM plotted versus expected yearly profits on DAEM only (wind farm operated without reserve).

Each point corresponds to one optimized layout, with the black circles representing layouts optimized with reserve, and the grey squares are

for layouts optimized without reserve.

Fig. 8 shows the expected yearly profits on JERM in function of expected yearly profits on DAEM only for the layouts

optimized for profits maximization with and without reserve participation. The highest profits on JERM are obtained for

layouts optimized with reserve: this highlights the importance of accounting for participation of wind farms to reserve markets

in the layout optimization process. Moreover, it can be seen that both yearly profits are linearly linked, i.e., higher profits

on DAEM only leads to higher profits on JERM. Surprisingly, the best total yearly profits on DAEM only are obtained for395

cases optimized with reserve. One reason that could explain this is that during the optimization without reserve, the wind farm

can only participate to one market (the DAEM). If day-ahead prices are very low or negative, wind farm will not bid on the

DAEM, resulting in no profit, thus leading to a zero gradient and the solution space being less explored. This means that even

if reserve market rules change dramatically, causing the wind farm to be unable to participate in the reserve market, operating

the optimized layout with reserve on DAEM only would still be profitable.400

4.4 Comparison with optimized layout for AEP maximization

We compare our novel formulation for WFLO with the objective function widely used in the current literature, i.e., AEP

maximization. For the latter, wind speeds and wind directions from the 2023 historical data are used during the optimization

process. To benchmark the performance of our methodology, expected yearly profits on JERM are computed with reserve
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participation, for the layouts optimized for AEP maximization. It is worth reminding that while the total energy supplied405

indicates the actual electricity sold (or activated, in case of reserve provision) and injected to the grid, AEP gives the theoretical

energy that could be supplied by the wind farm given the wind conditions, regardless of prices and erorrs on wind power

forecasts.
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Figure 9. Expected yearly profits on JERM plotted versus AEP. Each point corresponds to one optimized layout, with the black circles

representing layouts optimized with reserve, and the grey triangles are for layouts optimized for AEP maximization.

Fig. 9 shows the expected yearly profits on JERM in function of AEP for the layouts optimized for profits maximization

with reserve and AEP maximization. The uppermost black circle on the right represents the optimized layout giving the highest410

profits on JERM but also the highest AEP. It may seem confusing at first that the best AEP is not obtained for a layout optimized

for AEP maximization. A plausible explanation is that the profit function has better gradients than the AEP objective function,

allowing to avoid local minima. Note that this layout corresponds to the best layout optimized for profits maximization with

reserve for which results are given in Table 4.

Another interesting observation is that yearly profits on JERM are generally higher for layouts optimized for profits maxi-415

mization with reserve: if a diagonal is drawn in the scatterplot, all triangles are located below that line compared to the circles.

And if a vertical line is plotted for a given AEP, black circles are always located above the triangles. In other words, for the

same level of AEP, the layouts optimized for reserve lead to higher profits on JERM than the ones obtained for AEP maxi-

mization. The explanation for those significant economic losses is that the objective function with AEP aims at maximizing the

power output of wind farm regardless of electricity prices. It usually avoids wake losses for the directions of dominant wind.420

However, if low or even negative prices are associated with those directions, then profits will not increase. Moreover, besides

profits, it is not beneficial for the grid that wind farms produce a lot of electricity when prices are quite low. Indeed, for power
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systems with a high penetration of renewable energies, especially wind, low or even negative prices may correspond to periods

of overproduction, i.e., generation exceeds consumption. In that case, wind turbines might have to be shut down to curtail wind

energy and restore balance in the system. This spillage of renewable energy is of course not desirable and it is much more425

relevant to optimize wind farm layouts so that they produce more energy during times of scarcity (usually associated with

higher prices).

4.5 Generalization to unseen future data

In Sections 4.2 to 4.1, historical data from 2023 were used during the SGD optimizations, as well as for the computation of

expected yearly profits for the optimized layouts. In this section, revenues and supplied energy will be assessed with historical430

data from 2024, i.e., data unseen during the optimization process. Indeed, it is valuable to have optimized layouts that also

yield improved profits for future years.

Figure 10. Mean electricity prices with regard to (a) wind direction and (b) wind speed in 2024. (c) Mean normalized activated volumes of

reserve with regard to wind direction.

First, wind data and electricity prices from January to July 2024 are analyzed. The wind rose of 2024, plotted in Fig. 11,

shows patterns comparable with 2023: dominant wind directions are mostly South-Westerly. More wind blowing from the

North-East was visible in Fig. 5, which is not the case here. It can be seen in Fig. 10(a) that day-ahead prices, similar to 2023,435

have lower values for the direction of dominant winds, although this is less noticeable than in 2023. Moreover, day-ahead prices

in 2024 have overall lower mean values than in 2023. Reserve capacity prices do not vary much with wind direction, while

activation prices show more variability but no significant drop for the directions of dominant wind. The overall mean values

are in the same order of magnitude than for the previous year, and we observe again a sharp increase in reserve activation

prices between 20 and 25 m/s. However, this peak is less pronounced, with a mean peak value under 200e/MWh while it440

reached almost 250e/MWh in 2023. This could be explained by less sudden high wind events (e.g., storms), a smoother farm

cut-out or a better anticipation by the TSO. Normalized activation volumes exhibit lower values for directions of dominant

wind. Therefore, while wind, prices and activated reserve volume of 2024 share some similarities with data from 2023, they
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Figure 11. Wind rose at the location of Belgian offshore wind farms for 2024, from ERA5 data (latitude: 51.5◦N, longitude: 2.75◦E)

also exhibit noticeable differences. They are thus relevant to test the validity of the optimized layouts on unseen data. The case

presented here uses Rmax=50 MW when the wind farm is operated with reserve.445

Table 5. Expected yearly profits and supplied energy in 2024 for the base and best layout optimized on JERM with 2023 data, both operated

for maximizing production on DAEM (a;d), maximizing profits on DAEM only (b;e), and maximizing profits on JERM (c;f, with maximum

reserve bids Rmax=50 MW). Results reported as µ ± σ√
S

, where µ and σ relate to forecast uncertainty.

Base
Layout optimized

on JERM

Expected yearly profits

(a) On DAEM only (operation for prod. max.) [Me] 18.8916 ± 0.0053 19.6934 ± 0.0049 (▲4.24% w.r.t. base)

(b) On DAEM only (operated for optimized profits) [Me] 21.3610 ± 0.0044 22.1238 ± 0.0040 (▲3.57% w.r.t. base)

(c) On JERM (operated with reserve) [Me] 25.8388 ± 0.0046 26.6601 ± 0.0042 (▲3.18% w.r.t. base)

Expected energy supplied

(d) On DAEM only (operation for prod. max.) [GWh] 446.21 ± 0.03 458.86 ± 0.03 (▲2.83% w.r.t. base)

(e) On DAEM only (operated for optimized profits) [GWh] 395.40 ± 0.03 407.73 ± 0.03 (▲3.12% w.r.t. base)

(f) On JERM (operated with reserve) [GWh] 347.78 ± 0.03 359.62 ± 0.03 (▲3.40% w.r.t. base)

AEPtheory [GWh] 507.85 520.15 (▲2.42% w.r.t. base)

For the base layout, it can be observed in Table 5 that results show the same trends already noticed for 2023: profits on

DAEM only are increased when energy bids are made to maximize profits and not power production. Participating to reserve

leads to yearly profits improved by 20.96%, while it was only 7.82% for 2023. A reason for this better improvement is the
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overall lower values of day-ahead prices in 2024, thus giving more opportunities to make profits on reserve markets. Indeed,

allowing participation to reserve markets increases profits significantly when the day-ahead market is less profitable.450

The best layout optimized on JERM is the same than the one presented in Tab. 4, i.e. optimized with 2023 data. When

operated using 2024 data, the optimized layout lead to higher total profits and supplied energy, in the same order of magnitude

than for 2023. These results show that the optimized layout obtained with data from 2023 is still relevant for 2024, even though

both year showed dissimilarities in wind distribution and prices.
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Figure 12. Expected yearly profits on JERM in 2024 plotted versus AEP. Each point corresponds to one layout optimized using 2023 data,

with the black circles representing layouts optimized with reserve, and the grey triangles are for layouts optimized for AEP maximization.

If we compare again our methodology with the AEP maximization formulation, we observe the same patterns than for 2023.455

Indeed, when plotting expected yearly profits on JERM in function of AEP, for layouts optimized for profits on JERM and for

AEP, we still see that the grey triangles representing layouts for AEP maximization are below the black circles.

5 Conclusions

In the forthcoming years, offshore wind farms are expected to have a significant role for restoring frequency balance through

the provision of reserve. Future wind farms should therefore be designed for that purpose. In this paper, a new methodology460

for WFLO is developed to account for future offshore wind farms participating to secondary upward reserve markets. The

objective function aims at maximizing revenues from both day-ahead and reserve markets. It uses stochastic gradient descent

for the optimization and probabilistic forecasts of wind power and electricity prices. An inner optimization problem provides

the total power contracted on the JERM and the allocation of power to reserve procurement purposes.
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When applied on a real-life Belgian test case, results show that yearly profits are expected to increase in a significant way465

when accounting for participation to reserve markets, while exhibiting a lower supplied energy. This profit augmentation is

amplified when the maximum value for reserve bids is increased. Moreover, layouts optimized for profit maximization with

reserve markets lead to better yearly profits than when considering day-ahead market only in the objective function. Profits are

also higher for the developed methodology than for layouts optimized for AEP maximization, widely used in the literature,

even though the AEP is similar. Finally, the optimized layouts also yield better profits when computed using unseen data.470

Besides higher revenues, it is critical that wind farms are designed to produce more energy when prices are higher, usually

corresponding to periods of electricity shortage. Maximizing production when prices are low or even negative, generally

associated with a surplus of generation, leads to spillage of renewable energy.

The perspectives of this work are twofold. First, a better modelling of forecast errors could take into account cross-correlation

between wind, price and activated reserve forecasts (though this would not change the WFLO formulation). Secondly, the475

impact on blade loads could be relevant to assess the costs versus benefits of providing reserve services. Indeed, wind farms

participating in the reserve market should have less fatigue loads, due to a reduced activity (less energy supplied), which would

increase the farm lifetime and reduce the operation and maintenance costs of the wind farm components.
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